Grundwissen Mathematik	7. Jahrgangsstufe

Wissen und Können	Aufgaben und Beispiele
-------------------	------------------------

GEOM	ETRIE
GEOMETRIE Symmetrie	
Achsensymmetrie	A C'
Punktsymmetrie	A Z A'
Konstruktionen (Mittelsenkrechte m, Winkelhalbierende w, Lot l)	$A \nearrow M$ $A \nearrow $
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Achsen- und punktsymmetrische Vierecke (Quadrat, Rechteck, Raute, gleichschenkliges Trapez, Drachen – Parallelogramm)	
Winkelbetrachtungen	
Scheitel- und Nebenwinkel	$\alpha = \gamma; \beta = \delta$ z.B.: $\alpha + \beta = 180^{\circ}$

Stufen- und Wechselwinkel	Stufenwinkel: z.B. $\alpha_1 = \alpha_2$ Wechselwinkel:
	z.B. $\delta_1 = \beta_2$
Winkelsumme im Dreieck	$\alpha + \beta + \gamma = 180^{\circ}$
Winkelsumme im Viereck	$\alpha + \beta + \gamma + \delta = 360^{\circ}$
Winkelsumme im n-Eck	$(n-2)\cdot 180^{\circ}$
Kongruenz	ınd Dreiecke
Kongruente Dreiecke – Kongruenzsätze	Zwei Dreiecke sind kongruent (deckungsgleich) wenn sie in folgenden drei Bestimmungsstücken übereinstimmen: SSS (in den drei Seiten) WSW oder SWW (in einer Seite und zwei gleich liegenden Winkeln)
	SWS (zwei Seiten und dem Zwischenwinkel) SsW (zwei Seiten und dem Winkel, der der größeren Seite gegen überliegt)
Gleichschenkliges Dreieck	Ein Dreieck mit zwei gleich langen Seiten. Dreieck ist gleichschenklig Dreieck ist achsensymmetrisch Dreieck hat zwei gleich große Winkel
	Spezialfall gleichseitiges Dreieck: Ein Dreieck mit drei gleich langen Seiten. Jeder Winkel beträgt 60°.
Satz und Kehrsatz	Mathematische Sätze haben die Form: "Wenn…, dann…". Den Wenn-Teil nennt man Voraussetzung, den Dann-Teil Behauptung. Beim zugehörigem Kehrsatz sind Voraussetzung und Behauptung vertauscht. Dieser kann unwahr sein.
Satz des Thales	Ein Dreieck ABC hat genau dann bei C einen rechten Winkel, wenn die Ecke C auf einem Halbkreis über [AB] liegt.
	Mit Hilfe des Satz des Thales lassen sich Tangenten konstruieren:
Bezeichnungen im rechtwinkligen Dreieck	Hypotenuse
	Kathete

Satz von den Mittelsenkrechten Umkreis im Dreieck	In jedem Dreieck schneiden sich die Mittelsenkrechten der drei Dreiecksseiten in einem Punkt U. Dieser Punkt U hat von den drei Ecken den gleichen Abstand.
Winkelhalbierende im Dreieck Inkreis im Dreieck	Die drei Winkelhalbierenden schneiden sich in einem Punkt I, der von allen drei Seiten den gleichen Abstand hat.

ALGEBRA	
Terme	
Terme mit Variablen	$3 \cdot (5-a); x^3 + x + 4; x \cdot a^2 - a \cdot b$
	$T(a;b) = a + 5 \cdot b$
Berechnen von Termwerten	$T(x) = x^3 - 4x$; $T(5) = 5^3 - 4 \cdot 5 = 105$
	$T(a;b) = a^2 + b^2$; $T(3;4) = 3^2 + 4^2 = 25$
	$T(x) = 2x^3 - 3x + \frac{1}{x+1};$
	$T(2) = 2 \cdot 2^3 - 3 \cdot 2 + \frac{1}{2+1} = 10\frac{1}{3}$
Aufstellen und Interpretieren von Termen	68·72; 66·74; 64·76; 62·78; Erkennen der Gesetzmäßigkeit:
	$a_1 = 68 \cdot 72 = (70 - 2) \cdot (70 + 2)$
	$a_2 = 66 \cdot 74 = (70 - 2 \cdot 2) \cdot (70 + 2 \cdot 2)$
	$a_3 = 64 \cdot 76 = (70 - 2 \cdot 3) \cdot (70 + 2 \cdot 3)$
	$a_n = (70 - 2 \cdot n) \cdot (70 + 2 \cdot n)$
	Dividiere die dreifache Summe der Zahl x durch die Differenz von 2x und 17. $\Rightarrow T(x) = 3x : (2x - 17)$
	Ein Quader besitzt eine quadratische Grundfläche mit der Kantenlänge a, die Höhe ist b. Wie lautet der Term für den Oberflächeninhalt des Quaders? $\Rightarrow T(a;b) = 2a^2 + 4ab$

Zuordnung: Variablenwert– Termwert	$T(x) = \frac{1}{2}x + 2$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Zeichne den Graph des Terms $T(x) = -2x^2 + 4x$ für
	x-Werte zwischen -0,5 und 2,5.
	mumformungen
Gleichwertige Terme	$T_1(x) = x \left(\frac{1}{2}y + x\right) \text{ und } T_2(x) = \frac{1}{2}xy + x^2 \text{ sind}$
	äquivalent.
	$T_1(a) = 2a^2 - 4$ und $T_2(a) = 2a - 4$ sind nicht äquivalent.
Rechengesetze	Kommutativgesetz:
	a+b=b+a; $ab=ba$
	Assoziativgesetz:
	a+b+c = a+(b+c)=(a+b)+c
	$a \cdot b \cdot c = a \cdot (b \cdot c) = (a \cdot b) \cdot c$
	Distributivgesetz:
	$(a+b)\cdot c = a\cdot c + b\cdot c$
Umformung in Produkten	Regeln: $a^n \cdot a^m = a^{m+n}$
	$a^n \cdot b^n = (ab)^n$
	$(a^m)^n = a^{m \cdot n}$
	$4a \cdot 2b \cdot a \cdot \frac{1}{2}b \cdot 2a = 4 \cdot 2 \cdot \frac{1}{2} \cdot 2 \cdot a \cdot a \cdot a \cdot b \cdot b = 8a^3b^2$

Claide at a Tame	1
Gleichartige Terme	$3a \cdot 2b - \frac{1}{2}b \cdot 4a + 2ab^2 = 6ab - 2ab + 2ab^2 =$
	$=4ab+2ab^2$
	$4ab$ und $2ab^2$ sind nicht gleichartig.
Klammerregeln	Plusklammer:
	2x + (3+4x) = 2x + 3 + 4x = 6x + 3
	2x + (3-4x) = 2x + 3 - 4x = -2x + 3
	Minusklammer:
	2x - (3 + 4x) = 2x - 3 - 4x = -2x - 3
	2x - (3-4x) = 2x - 3 + 4x = 6x - 3
Ausmultiplizioren und Ausklammern	,
Ausmultiplizieren und Ausklammern	$6z \cdot \left(4z - \frac{1}{3}x\right) = 24z^2 - 2xz$
	$4a^2 + 8a = 4a \cdot (a+2)$
Multiplizieren von Summen	$(y+2x)\cdot(3y-4x)=$
	$= y \cdot 3y + y \cdot (-4x) + 2x \cdot 3y + 2x \cdot (-4x) =$
	$=3y^2 - 4xy + 6xy - 8x^2 = 3y^2 + 2xy - 8x^2$
Binomische Formeln	$(a+b)^2 = a^2 + 2ab + b^2$
	$(a - b)^2 = a^2 - 2ab + b^2$
	$(a + b) (a - b) = a^2 - b^2$
	Prozentrechnung
Lösen von linearen Gleichungen	$19 - 2(\frac{1}{3}x + 2) = 34 + 4(x - 3)$
Beide Seiten jeweils so weit wie möglich zusammenfassen	j –
2) Variable auf eine Seite bringen	$15 - \frac{2}{3}x = 22 + 4x \qquad -4x - 15 $
3) Division durch den Vorfaktor vor der	14, 7
Variable	$-\frac{14}{3}x = 7 \qquad \cdot (-\frac{3}{14})$
	x = -1,5
Lösungsverfahren für lineare Gleichungen (in	Auf einem Bauernhof befinden sich Hasen und
Anwendungsbeispielen)	Hühner. Die Tiere haben zusammen 33 Köpfe und
 Variable einführen Gleichung aufstellen 	94 Beine. Wie viele Hasen sind es?
3) Gleichung lösen	Lösung: Anzahl der Hasen: x
4) Lösung überprüfen und Antwort	4x + 2(33 - x) = 94
formulieren	x = 14
	A: Es sind 14 Hasen.
Grundgleichung der Prozentrechnung	Prozentsatz · Grundwert = Prozentwert
	n und Daten
Median eines geordneten Datensatz	Ungerade Anzahl Daten: Mittlerer Wert
	2,4,5,7,8 ► Median: 5
	Gerade Anzahl Daten:
	Arithmetisches Mittel der beiden mittleren Werte
	2,3,7,8,9,10► Median: 7,5
Spannweite	Differenz aus größtem und kleinstem Wert des
	Datensatzes
	2,3,6,8 > Spannweite: $8-2=6$

Quartile	Durch den Median wird ein geordneter Datensatz in einen unteren und einen oberen Block zerlegt (der Median selbst gehört zu keinem der beiden Blöcke). Der Median des unteren Blocks heißt unteres Quartil, der Median des oberen Blocks heißt oberes Quartil.
Boxplot	Er besteht aus einer Box (Rechteck) und zwei Antennen. Die Grenzen des Rechtecks bilden das obere und das untere Quartil. Der Median liegt in der Box. Das Minimum und das Maximum der Werte legen die Antennen fest. Eine Achse mit Werten vervollständigt den Boxplot.
	Minimum Median Maximum
	Unteres Quartil Oberes Quartil